Consider a partition of all primes \(\Pi = P_1 \cup \cdots P_k \), and let \(G_i \) be quasi-finite complexes such that \((G_i)_{P_i} \), \(G_i \) localized at \(P_i \) are \(H \)-spaces, that are rationally equivalent as \(H \)-spaces.

The homotopy pullback

\[
\begin{array}{ccc}
(G_1)_{P_1} & \longrightarrow & (G_1)_0 \\
\downarrow & \simeq & \downarrow \\
(G_2)_{P_2} & \longrightarrow & (G_2)_0 \\
\downarrow & \simeq & \downarrow \\
& \vdots & \\
(G_k)_{P_k} & \longrightarrow & (G_k)_0
\end{array}
\]

is well known to be a quasifinite \(H \)-space [1]. We will say that \(X \) is obtained by Zabrodsky mixing of \(G_1, \cdots, G_k \) at \(P_1, \cdots, P_k \). Note that \(X \) depends on the rational equivalences chosen.

We consider \(H \)-spaces obtained by mixing the following types of spaces:

At the prime 2: products of Lie groups and \(S^7 \) and \(RP^7 \).

At odd primes:

(a) Lie groups, \(S^7 \), \(RP^7 \) and
(b) any stably reducible quasi-finite P. D. space with no 3-dimensional generator of the rational exterior algebra cohomology and finitely presented fundamental group, and
(c) principal \(S^3 \)-bundles with basespace a stably reducible quasi-finite P. D. space

We prove the following theorems:

Theorem. Let \(X \) be as above, 1-connected; then \(X \) is of the homotopy type of a parallelizable differentiable manifold.

We notice that by choosing all \(G_i \) equal, but choosing different rational equivalences we get the following:

Corollary. Let \(Y \) be in the genus of a simply connected Lie group \(G \) (i. e. \(Y_p \cong G_p \) for all primes \(p \)); then \(Y \) is homotopy equivalent to a parallelizable manifold.
In the nonsimply connected context we prove the following:

Theorem. Let \(X \) be as above; then \(X \) is of the homotopy type of a finite complex, and in the genus of \(X \) is a parallellizable differentiable manifold.

Indication of proof. The case where \(X(2) \cong (\mathbb{RP}^3)^k \times (S^7)^l \times (\mathbb{RP}^7)^m \) requires special arguments. In all other cases we proceed by constructing a fibration \(S^1 \to X \to Y \), where \(Y \) is a stably reducible P. D. space. The map \(p \) induces isomorphisms on fundamental groups, and the fibration is orientable. We then use [2] to compute the Wall finiteness obstruction for \(X \). The formula in this case says \(\sigma(X) = \chi((S^1) \cdot \sigma(Y)) \), \(\chi \) the euler characteristic; hence \(\sigma(X) = 0 \), so \(X \) is homotopy equivalent to a finite CW complex.

We then consider \(X \) as a P. D. boundary of the corresponding \(D^2 \)-fibration \(D^2 \to E \to Y \), and notice that the classifying map \(E \to BG \) reduces to \(BO \) since \(Y \) is stably reducible and \(S^1 \)-fibrations are equivalent to \(O(2) \)-bundles. This allows us to set up a surgery problem

\[
(M, \partial M) \to (E, Y)
\]

and we proceed to show the surgery problem \(\partial M \to Y \) has obstruction 0. The reduction of \(E \) is trivial when restricted to \(Y \); hence \(Y \) is of the homotopy type of a parallellizable differentiable manifold.

References

Odense University