Math 323 Calculus III, Spring 2024

Sections

Section Number Instructor		Meeting times	
01	Meenakshy Jyothis	MWF 8:00-9:30, CW 214	
02	Shuchen Mu	MWF 8:00-9:30, CW 212	
03	Matt Wolak	MWF 9:40-11:10, CW 112	
04	Sayak Sangupta	MWF 11:20-12:50, CW 112	
05	Abraham Berman	MWF 1:10-2:40, CW 112	
06	Adam Weisblatt	MWF 1:10-2:40, CW 204	
07	Abraham Berman	MWF 2:50-4:20, CW 112	
08	Sayak Sangupta	MWF 4:40-6:10, OH G102	

Course coordinator: Dr. Adam Weisblatt

Textbook

Multivariable Calculus, 9th Edition, James Stewart You will need an online access code to WebAssign. More info on this below.

- Chapter 12: Vectors and the Geometry of Space
- Chapter 13: Vector Functions
- Chapter 14: Partial Derivatives
- Chapter 15: Multiple Integrals
- Chapter 16: Vector Calculus

Homework and WebAssign

For each section of material covered there will be an assignment of problems on WebAssign. Your WebAssign homework counts towards your grade. Study groups are encouraged, but students should not become too dependent on others. Watching the instructor, or other students, do the problems will not be enough to learn the material. It will be necessary for you to do many exercises yourself in order to be successful on the exams. Attempts to solve homework problems provide the best way to learn the material and to prepare for exams.

WebAssign is an online homework system which includes an e-book version of our text. If you purchased the textbook package from our Bookstore or "Cengage Unlimited" when taking 226/227, then you do not need to purchase another one. If you buy the book through the Binghamton University Bookstore then it comes with an access code. If you do not wish to buy the textbook package through the Bookstore, then you can instead purchase "Cengage Unlimited" (1-semester or 4 months). This comes with the ebook and can also be purchased through our Bookstore. "Cengage Unlimited" also comes with the option to rent a hard copy of the textbook by just paying for shipping and handling. You'll have temporary free access to WebAssign for two weeks into the semester without an access code.

To gain access to your WebAssign section you need to submit the "Class Key" that you receive from your instructor. All information regarding how to login with Class Key and purchase an access code can be found here Binghamton

University WebAssign Registration

Your username is your Binghamton University username and the institution code is "binghamton".

WebAssign Login Page

Prerequisite

Math 227 or Math 230

Course Objectives

Develop theoretical and practical skills for multivariable calculus. Specifically, students are expected to be able to demonstrate the following:

- Visualize geometry in three-dimensional space
- Find and apply vector and scalar equations of lines and planes in three-dimensional space
- Understand the calculus of vector-valued functions
- Solve unconstrained and constrained optimization problems
- Find and interpret partial derivatives, directional derivatives, and gradients
- Set up and evaluate double and triple integrals in rectangular, cylindrical, and spherical coordinates
- Set up and evaluate line and surface integrals in addition to applying Green's, Stokes', and Divergence Theorem

Evaluation

The final grade will be determined as follows:

- Test 1, 20%
- Test 2, 20%
- Test 3, 20%
- Final Exam, 25% (see the schedule)
- HW & Quizzes, 15%

Tentative Schedule

Week	Dates	Sections	Topics
1	Jan 17-19	12.1	3-D Coordinates
1		12.2	Vectors (Skip Physic Problems/Applications)
2	Jan 22-26	12.3	Dot Products (Skip Direction Angles)
		12.4	Cross Products (Skip Torque & Triple Product)
		12.5	Lines and Planes (Skip Distances)
3	Jan 29 - Feb 2 (Add/Drop Deadline is Jan 29)	12.6	Quadric Surfaces
		13.1	Vector Valued Functions
		13.2	Derivatives of Vector Valued Functions

	53,25 22:55		That 525 calculas in, spring 2
		13.3	Arc Length Only (Skip Curvature & Normal/Binormal Vectors)
4	Feb 5-9	13.4	Motion in Space (Skip Tangential & Normal Components of Acceleration)
		Review	Exam 1 Review: Chapters 12 and 13
5		Exam 1	Chapters 12 and 13
	Feb 12-16	14.1	Functions of Several Variables
		14.2	Limits and Continuity
6	Feb 19-23	14.3	Partial Derivatives
		14.4	Tangent Planes and Linear Approximation
		14.5	The Chain Rule
7	Feb 25 - Mar 1	14.6	Directional Derivatives and the Gradient
		14.7	Maxima and Minima
		14.8	Lagrange Multipliers
		Spring Break	
3	March 4-8	Spring Break	
0		Spring Break	
9		15.1	Double Integrals over Rectangles
	March 11-15	15.2	Double Integrals over General Regions
		Review	Exam 2 Review: Sections 14.1-15.2
		Exam 2	14.1-15.2
10	March 18-22	15.3	Double Integrals in Polar Coordinates
		15.6	Triple Integrals
11	March 25-29 (Withdraw Deadline is March 25)	15.7	Triple Integrals in Cylindrical Coordinates
		15.8	Triple Integrals in Spherical Coordinates
		16.1	Vector Fields
		Easter Break	
12	April 1-5	16.2	Line Integrals
12		16.3	The Fundamental Theorem of Line Integrals
		16.4	Green's Theorem
13	April 8-12	Review	Exam 3 review: Sections 15.3-16.4
	April 0-12		
		Exam 3 16.5	Sections 15.3-16.4 Curl and Divergence
14	April 15-19	16.6	Parametric Surfaces
		16.7	Surface Integrals
		16.7 (Passover Break on	
15	April 22-26	Tue & Wed)	Surface Integrals
		16.8 (Class Meets on Thursday Apr 25)	Stokes' Thm
15			
IJ		16.8	Stokes' Thm
		16.8 16.9	Stokes' Thm Divergence Thm
16	April 29 - May 1		

Sample Exams

Exam 1 Practice Exams

Exam 2 Practice Exams

Exam 3 Practice Exams

Final Exam Practice Exams (1-5)

Help Outside of Class

There is free tutoring offered though University Tutoring Services. All information regarding tutoring can be found here: http://www.binghamton.edu/clt/tutoring-services/index.html

If you have test anxiety information about how to handle anxiety can be found here:https://www.binghamton.edu/hpps/mental-health/anxiety.html

Disability Services

If you need accommodations for a disability, please see your instructor with documentation from Services for Students with Disabilities. We will do our best to accommodate your needs.

Academic Honesty

Cheating is considered a very serious offense. According to the University Catalog, cheating consists of: "Giving or receiving unauthorized help before, during or after an examination". The full strength of Binghamton Academic Honesty Policy will be applied to anyone caught cheating. This may include failing the course, and further disciplinary action. All students should be familiar with the University's Student Academic Honesty Code.

Other important information

The math help rooms and free tutoring from the CLT can be very useful. The very best students are the ones who ask for help.

Please note that no calculators are allowed during exams.

This course is a 4-credit course, which means that students are expected to do at least <u>12.5 hours of course-related</u> <u>work or activity each week</u> during the semester. This includes scheduled class lecture/discussion meeting times as well as time spent completing assigned readings, studying for tests and examinations, participating in lab sessions, preparing written assignments, and other course-related tasks.

From: http://www2.math.binghamton.edu/ - Binghamton University Department of Mathematics and Statistics

Permanent link: http://www2.math.binghamton.edu/p/calculus/math_323/start

Last update: 2024/01/17 20:23

