Problem 1 (suggested by Prof. Matt Brin) (due Monday, September 14)
「A loop of string has fixed length $\overline{\$ L} \overline{\$}$. It is looped around a disk of radius $\overline{\$ r \$} \overline{\text { a }} \overline{\text { and }} \overline{\text { pull }} \bar{d} \bar{d}$ tight at one point so as to form an "ice cream cone" shape as pictured here. Consider the region labeled $\$ A \$$ that is inside the loop of string, but outside the disk. Note that the area of $\$ A \$$ is zero if either $\$ r=0 \$$ or if $\$ r=\mathrm{L} / 2 \backslash \mathrm{pi} \mathrm{\$}$. What value of $\$ r \$$ maximizes the area of the region $\$ A \$$ and what is this maximum value of the area?

This was our warm-up problem but only two solutions were received, from John Giaccio and Yuqiao Huang, both correct. Both solutions are similar to the solution discussed in the following link Solution

```
From:
https://www2.math.binghamton.edu/ - Binghamton University Department of Mathematics and Statistics
```

Permanent link:
https://www2.math.binghamton.edu/p/pow/problem1f20

Last update: 2020/10/01 21:46

