Problem 3 (due Monday, March 11)
Let $\$ p(x)=c x^{\wedge} n+c_{-} 1 x^{\wedge}\{n-1\}+\backslash \operatorname{dots} \$$ be a polynomial of degree $\$ n \$$ with real coefficients and the leading coefficient \$c\neq $0 \$$. Prove that at least one of the numbers $\$|p(0)|,|p(1)|, ~ \ / d o t s$, $|p(n)| \$$ is greater or equal than $\$ \mid$ displaystyle $\backslash f r a c\{|c| n!\}\left\{2^{\wedge} n\right\} \$$. Prove furthermore that this bound is best possible.
$\llcorner--1$
We received a solution form Mithun Padinhare Veettil. For a complete solution see the following link Solution.

```
From:
http://www2.math.binghamton.edu/ - Binghamton University Department of
Mathematics and Statistics
Permanent link:
http://www2.math.binghamton.edu/p/pow/problem3s24
Last update: 2024/03/12 04:27
```

