2. T. Zaslavsky: Voltage-graphic geometry and the forest lattice (chaired by N. Robertson)

1. We begin with a theorem that provides a focal point for the general theory. Let $\Gamma = (N,E)$ be a graph, $n = |N|$, $f_k = \text{the number of } k\text{-tree spanning forests in } \Gamma$, and $t(\Delta) = \text{the number of tree components of the graph } \Delta$. Let \mathcal{F} be the set of forests of Γ, including the null graph, ordered in the following way: $F \leq F'$ if F' consists of some (or no) trees of F plus (optionally) additional edges linking some of these trees.

Forest Theorem. \mathcal{F} is a geometric lattice of rank n. Its rank function is $\text{rk } F = n - t(F)$. Its characteristic polynomial (when Γ is finite) is

$$p_{\mathcal{F}}(\lambda) = (-1)^n \sum_{k=0}^{n} (1 - \lambda)^k f_k.$$

Some other facts about \mathcal{F}: its 0 element is (N,\emptyset), its 1 is (\emptyset,\emptyset), its atoms are (N,e) for each link e and $(N\setminus\{v\}, \emptyset)$ for each vertex v.

The Forest Theorem can be proved directly, e.g. by deletion-contraction, but it is more interesting to derive it from the theory of voltage-graphic matroids.
2. A **voltage graph** is a pair \((\Gamma, \varphi)\) consisting of a graph \(\Gamma = (N, E)\) and a **voltage**, a mapping \(\varphi: E \to G\) where \(G\) is a group called the **voltage group**. The voltage on an edge depends on the sense in which the edge is traversed: if for \(e\) in one direction the voltage is \(\varphi(e)\), then in the opposite direction it is \(\varphi(e)^{-1}\). The voltage on a circle is the product of the edge voltages taken in order with consistent direction; if the product equals 1 the circle is called **balanced**. (While in general the starting point and orientation of \(C\) influence its voltage, they have no effect on whether it is balanced.)

A subgraph is balanced if every circle in it is balanced. For \(S \subseteq E\), let \(b(S) = \text{the number of balanced components of } (N, S)\).

Matroid Theorem. The function \(rk S = n - b(S)\) is the rank function of a matroid \(G(\Gamma, \varphi)\) on the set \(E\). A set \(A \subseteq E\) is closed iff every edge \(e \notin A\) has an endpoint in a balanced component of \((N, A)\) but does not combine with edges in \(A\) to form a balanced circle. A set is a circuit iff it is a balanced circle or a bicircular graph containing no balanced circle.

Bicircular graphs

Theta graphs

Handcuffs
We call \(G(\Gamma, \varphi) \) a **voltage-graphic matroid**. In case it is a simple matroid it is a subgeometry of the Dowling lattice \(Q_n(\Theta) \) (see [1]).

Example 1. \(\varphi = 1 \). Then \(G(\Gamma, \varphi) = G(\Gamma) \), the usual graphic matroid.

Example 2. \(\Theta = \{+1\} \). Then \((\Gamma, \varphi)\) is a signed graph.

Example 2a. Same, with \(\varphi = -1 \). Then \(G(\Gamma, \varphi) \) is the even-circle matroid of \(\Gamma \) (see [2] for references).

Example 3. No balanced circles. Then \(G(\Gamma, \varphi) = B(\Gamma) \), the bicircular matroid of \(\Gamma \) (see [4] for references). The balanced sets are the spanning forests. The closed sets correspond to the forests \(F = (X, E(F)) \) such that the subgraph of \(\Gamma \) induced on \(X^c \) has no trees. The circuits are the bicircular graphs (whence the name). The rank function is \(\text{rk } S = n - t(S) \).

The first parts of the Forest Theorem follow from these observations, the Matroid Theorem, and:

Lemma. \(\mathcal{F} \) = the lattice of flats of \(B(\Gamma^c) \), where \(\Gamma^c \) denotes \(\Gamma \) with a loop at every node.

3. Now let \(\Gamma \) be finite and let \(\Theta \) have finite order \(g \). A proper \(\mu \)-coloring of \((\Gamma, \varphi)\) is a mapping

\[\kappa : N \rightarrow \{0\} \cup \{1, \ldots, \mu\} \times \Theta \]
such that, for any edge e from v to w (including loops), we have $\kappa(v) \neq 0$ or $\kappa(w) \neq 0$ and also

$$\kappa_1(v) \neq \kappa_1(w) \text{ or } \kappa_2(w) \neq \kappa_2(v) \varphi(e) \quad \text{if } \kappa(v), \kappa(w) \neq 0,$$

where κ_1 and κ_2 are the numerical and group parts of κ. Let $\chi(\mu g + 1)$ be the number of proper μ-colorings of (Γ, φ) and let $\chi^b(\mu g)$ be the number which do not take the value 0.

Chromatic Polynomial Theorem. $\chi(\mu g + 1)$ is a polynomial in μ.
Indeed $\chi(\lambda) = \lambda^b(\mu g) p(\lambda)$, where $p(\lambda)$ is the characteristic polynomial of $G(\Gamma, \varphi)$.

Balanced Chromatic Polynomial Theorem. $\chi^b(\mu g)$ is a polynomial in μ. Indeed $\chi^b(\lambda) = \sum S \lambda^b(S)(-1)^{|S|}$, summed over balanced $S \subseteq E$.

Fundamental Theorem. Let $\chi^b_X(\lambda)$ denote the balanced chromatic polynomial of the induced voltage graph on $X \subseteq N$. Then

$$\chi(\lambda) = \sum_{X \text{ stable}} \chi^b_X(\lambda - 1).$$

In particular for the forest lattice we look at $B(\Gamma^C)$. The necessary finite voltage group may be, for instance, the power set $\mathcal{P}(E)$ with symmetric difference, with voltage $\varphi(e) = \{e\}$. Then the latter two theorems quickly yield the characteristic polynomial of \mathfrak{F}.

